<<
>>

Центральный процессор ЭВМ

Основу центрального процессора ПЭВМ составляет микропроцессор (МП) - обрабатывающее устройство, служащее для арифметических и логических преобразований данных, для организации обращения к ОП и ВНУ и для управления ходом вычислительного процесса.

В настоящее время существует большое число разновидностей микропроцессоров, различающихся назначением, функциональными возможностями, структурой, исполнением.

Наиболее существенными классификационными различиями между ними чаще всего выступают:

- назначение (микропроцессоры для серверов и мощных приложений; МП для персональных компьютеров и т.д.);

- количество разрядов в обрабатываемой информационной единице (8-битные, 16битные, 32-битные, 64-битные и др.);

- технология изготовления (0.5 мкм - технология; 0.35 мкм; 0.25 мкм; 0.18 мкм; 0.13 мкм; 0.07 мкм и т.д.).

Среди МП для серверов и мощных приложений прочное место завоевали RISC- процессоры (Reduce Instruction Set Computing) с сокращенной системой команд. Система команд таких МП содержит ограниченное число (порядка 50) очень простых команд. За счет этого упрощаются схемы управления микропроцессором и сокращаются его размеры. На кристалле МП (чипе) освобождается место, которое используется для размещения кеш-памяти большого объема. Наличие такой памяти внутри чипа позволяет сократить количество обращений к основной памяти, а это приводит к повышению быстродействия ЭВМ в 2-10 раз, так как обращение к кеш-памяти, расположенной внутри чипа, требует меньших затрат времени. Для повышения производительности RISC-процессоры обычно работают с машинными словами очень большой длины (не менее 64 бит).

К числу RISC-процессоров относятся микропроцессоры «SPARC» и «UltraSPARC» фирмы Sun Microsystems, «Alpha» фирмы Compaq, «MIPS» фирмы Silicon Graphics. Консорциум фирм IBM-Motorola-Apple разрабатывает и выпускает МП «Power PC», или сокращенно «PPC». Фирма Intel (INTegrated ELectronics) совместно с Hewlett Packard разрабатывает RISC-процессор «P7» с тактовой частотой более 900 МГц, обеспечивающий совместимость с 32-битными МП. Прогнозируется, что два из этих микропроцессоров (PPC и P7) в модифицированном виде будут использоваться до 2025 года.

Микропроцессоры для персональных компьютеров обычно относятся к CISC- процессорам (Complete Instruction Set Computing) с полной системой команд, насчитывающей до 250 единиц. К их числу относятся 8-битные микропроцессоры i8080, i8085 (с буквы i начинаются названия МП, выпускаемых фирмой Intel), Z80 (с буквы Z начинаются названия МП фирмы Zilog) и др. 16-битные микропроцессоры i8086, i8088; 32битные - i80386, i80486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium IV, которые совместимы по командам и форматам данных снизу вверх. Эти микропроцессоры используются в различных модификациях IBM PC.

Два из этих микропроцессоров - i8086 и i8088 являются родоначальниками серии микропроцессоров, получивших сокращенное наименование «x86» (все последующие типы МП основываются на них и лишь развивают их архитектуру). По назначению и функциональным возможностям эти два микропроцессора одинаковы. Различаются они только разрядностью шины данных системной магистрали: МП i8086 имеет 16-битную шину данных, а i8088 - 8-битную.

В связи с этим выборка команд и операндов из основной памяти производится за разное число машинных циклов. С точки зрения функциональных возможностей существенного значения эти различия не имеют, поэтому и упоминают о них, как правило, вместе: 8086/8088.

МП 8086/8088 имеет базовую систему команд. В следующей модификации МП фирмы Intel - 80186 реализована расширенная система команд. Расширение системы команд продолжается во всех новых моделях, но кроме этого в каждой новой модели вводятся дополнительные архитектурные решения: в 80286 введен встроенный блок управления ОП, работающей в виртуальном режиме (что позволило увеличить предельно допустимый объем виртуальной памяти до 4 Гбайт при 16 Мбайтах физической) и блоки, позволяющие реализовать мультизадачность: блок защиты ОП и блок проверки уровня привилегий, присваиваемых каждой задаче. Кроме того, во всех последующих моделях вводятся и совершенствуются средства, позволяющие повысить производительность МП: совершенствуются конвейер команд и встроенный блок управления ОП, вводится микропрограммное управление операциями, прогнозирование переходов по командам условной передачи управления, скалярная архитектура ЦП (арифметический конвейер) и мультискалярная архитектура (несколько параллельно работающих арифметических конвейеров, одновременно выполняющих несколько машинных операций, благодаря чему появляется возможность за один такт МП выполнять более одной машинной операции). Начиная с 80486, в кристалле МП размещается арифметический сопроцессор для операций с плавающей точкой.

Все эти усовершенствования позволяют сделать персональную ЭВМ IBM PC мультипрограммной, многопользовательской (МП 80286 позволял работать с 10 терминалами; 80386 - с 60) и многозадачной. С помощью операционной системы стало возможным реализовать работу в режиме SVM (системы виртуальных машин), т.е. на одной ПЭВМ реализовать множество независимых виртуальных машин (МП 80386 позволял в этом режиме реализовать работу до 60 пользователей, каждому из которых предоставлялась отдельная виртуальная ПЭВМ IBM PC на МП 8086).

Начиная с МП i80586, цифровая характеристика микропроцессора заменена названием. Этот микропроцессор получил название «Pentium».

Тактовая частота микропроцессора Pentium быстро выросла с 60 МГц до 200 МГц. В этот микропроцессор встроено два внутренних кэша: кэш команд и кэш данных (каждый по 8 Кбайт), в нем реализовано «интеллектуальное» управление потреблением мощности: при работе с малой нагрузкой МП автоматически переключается в режим малого потребления электроэнергии; если ЭВМ в течение большого промежутка времени не используется совсем, МП переходит в «режим покоя». Экономия электроэнергии приводит к снижению нагрева микропроцессора, а следовательно - к увеличению срока его службы.

Разработан новый тип микропроцессора - Pentium MMX (MultiMedia Extention), в котором реализована архитектура вычислительных систем класса SIMD, введено 57 новых команд, необходимых для обработки аудио, видео и телекоммуникационной информации.

Следующая разновидность микропроцессоров - Pentium Pro - имела в том же корпусе кэш-память второго уровня объемом 256-512 Кбайт. Кроме того, в этом микропроцессоре система команд х86 транслировалась в RISC-команды (три х86-команды преобразовывались в 12 RISC-команд), исполнявшиеся параллельно работающими блоками вычислений.

В последующих разновидностях микропроцессоров (Pentium II, Pentium III, Pentium IV) вводится ряд усовершенствований, позволяющих повысить тактовую частоту, емкость сверхоперативной памяти, быстродействие и надежность функциональных блоков. Тактовая частота, например, быстро проходила ряд: 533, 566, 600, 633, 667, 700, 733, 766, 800, 850, 866 МГц, 1, 1.13, 1.4, 1.5 ГГц и выше. Ведутся работы по освоению технологии SiGe, позволяющей освоить выпуск микросхем, работающих в диапазоне частот 20-50 ГГц.

Объем кэша 1 уровня вырос до 16 + 16 = 32 Кбайт. Начиная с Pentium Pro, все последующие модели обеспечивают выполнение команд с изменением последовательности, суть которой заключается в том, что мультискалярная архитектура (т.е. наличие в составе микропроцессора нескольких параллельно работающих арифметических конвейеров) допускает, что при параллельном выполнении команд программы один из конвейеров может выполнить свою работу раньше, чем ее закончат другие - и процесс вычислений

вынужден останавливать конвейер в ожидании получения необходимых результатов. Такие ситуации нарушают естественную последовательность выполнения команд программы.

Ведущие фирмы - производители ЭВМ с целью совершенствования выпускаемой ими продукции активно ведут научные исследования, о чем свидетельствуют данные, приведенные в таблице 3.

Таблица 3.

Творческая деятельность компьютерных фирм в 1997 г.


Например, фирмой IBM были получены патенты по такой тематике: применение в микросхемах медных проводников вместо алюминиевых (50 патентов), что позволяет увеличить степень интеграции микросхем, повысить их тактовую частоту, снизить энергопотребление, рассеиваемую мощность и стоимость изготовления; группа патентов, позволяющая в накопителе на жестких магнитных дисках достигнуть плотности записи 10 Мбит на 1 кв. дюйм - что позволило фирме создать НЖМД емкостью 1 Гбайт размером с пуговицу средней величины; группа патентов, обеспечивающая запись и чтение нескольких сторон CD за счет перефокусировки лазерного луча (без переворачивания компакт-диска); патент на клавиши, чувствительные к силе нажатия, и др. В результате выполнения таких работ с 1998 года IBM выпускает микропроцессоры PPC 750 с медной разводкой.

Постоянный научный поиск ведется в области технологии изготовления больших интегральных схем. Основными направлениями совершенствования являются увеличение плотности монтажа (т.е. сокращение физических размеров компонентов ИС), повышение быстродействия и надежности.

Микропроцессоры фирмы Intel Pentium Pro начали выпускать по технологии 0.5 мкм (данный параметр характеризует минимально различимый размер компонентов ИС), Pentium II выпускался уже по технологии 0.35 мкм. Микропроцессоры Xeon (для серверов) и Celeron (для недорогих компьютеров) выпускаются по 0.25 мкм - технологии. «Pentium III» (тактовая частота в конце 1999 года достигала 750 МГц) и МП «Alpha» фирмы Compaq (с тактовой частотой 1 ГГц) выпускались по 0.18 мкм - технологии.

Считается, что переход на 0.13 мкм - технологию позволит повысить тактовую частоту МП до 1.3-1.5 ГГц. В то же время, фирма Texas Inatruments с 1998 г. осваивает 0.07 мкм-технологию.

Микропроцессоры фирмы Intel, начиная с Pentium II, имеют ядро, выполненное в виде RISC-процессора, и аппаратный транслятор команд х86 в RISC-команды.

В персональных ЭВМ нашли применение не только микропроцессоры фирмы Intel. Крупнейшими производителями аналогов микропроцессорам Intel (клонов) являются фирмы Cyrix и AMD, кроме того, микропроцессоры для персональных ЭВМ выпускают IBM, Motorola, Compaq, Sun Microsystems Inc. и др. Микропроцессоры для персональных компьютеров - однокристальные, тогда как для серверов, суперсерверов и суперЭВМ выпускаются микропроцессоры, размещенные на нескольких кристаллах (например, микропроцессоры POWER, Sparkc, Alpha).

Обобщенная структурная схема 32-разрядного микропроцессора x86 (серии Pentium) приведена на рис. 13.

Условно микропроцессор можно разделить на три части: исполнительный блок (Execution Unit, EU), устройство сопряжения с системной магистралью (Bus Interface Unit, BIU) и блок управления микропроцессором.

В исполнительном блоке находятся арифметический блок (DATE CACHE, АЛУ, регистр флагов); регистры общего назначения (РОН) EAX, EBX, ECX, EDX; общие регистры ESI, EDI, ESP, EBP.

В регистре флагов каждый разряд имеет строго определенное назначение. Обычно разряды регистра флагов устанавливаются аппаратно при выполнении очередной операции в зависимости от получаемого в АЛУ результата. При этом фиксируются такие свойства получаемого результата, как нулевой результат, отрицательное число, переполнение разрядной сетки АЛУ и т.д.

Регистры общего назначения EAX, EBX, ECX, EDX имеют длину по 32 бита. Каждый из них делится на два 16-битных регистра, младший из которых имеет свое имя (что обеспечивает совместимость с 16-разрядными версиями микропроцессоров). Так, в регистре EAX содержится 16-битный регистр AX, в регистре EBX содержится регистр BX, в ECX - регистр CX, в EDX - регистр DX. Каждый из 16-битных регистров в свою очередь состоит из двух 8-битных регистров, имеющих свои имена. Так, АХ (аккумулятор) делится на AH и AL, регистр базы (Base Register) BX делится на BH и BL. Счетчик (Count Register) CX включает регистры CH и CL. Регистр данных (Data Register) DX содержит регистры DH и DL. Каждый из коротких регистров может использоваться самостоятельно или в составе регистровой пары. Условные названия (аккумулятор, регистр базы, счетчик, регистр данных) не ограничивают применения этих регистров - эти названия говорят о наиболее частом использовании их, или об особенности использования того или иного регистра в той или иной команде. Буква «Н» в имени 8битного регистра означает верхний (или старший) регистр, буква «L» - младший (т.е. младший байт 16-битного регистра или младший однобайтный регистр двухбайтного регистра).

Рис. 13. Обобщенная структурная схема 32-разрядного микропроцессора x86


Общие регистры - ESP, EBP, ESI, EDI также 32-х битные, младшая половина которых доступна как регистры SP, BP, SI, DI.

Регистр ESP указывает на адрес вершины стека (адрес, куда будет заноситься следующая информация командой PUSH).

Регистр ЕВР содержит адрес базы, который может использоваться при работе со стеком.

Регистр ESI - адрес источника - обычно содержит адрес начала блока информации для операций типа «переместить блок», а регистр EDI - адрес приемника (назначения) в этой операции. Блок управления микропроцессором содержит сегментные регистры, системные регистры и блок выработки управляющих сигналов микропроцессора.

Сегментные регистры CS, DS, ES, FS, GS, SS имеют длину по 16 бит и используются для формирования физических адресов команд и данных в основной памяти.

• CS - сегмент кода исполняемой в данный момент программы.

• DS - сегмент данных исполняемой программы: константы, строковые ссылки и т.д.

• SS - сегмент стека исполняемой программы.

• ES, FS, GS - дополнительные сегменты, которые в некоторых программах могут не

использоваться.

Системные регистры GDTR и LDTR являются регистрами глобальной и локальной дескрипторных таблиц и используются для определения текущего адреса ОП. GDTR имеет длину 48 бит, LDTR - 16 бит (точнее, 16 бит - это только «видимая» часть этого регистра).

Регистр IDTR (таблицы дескрипторов прерываний - DTR) имеет длину 48 бит, 32 из которых являются базовым адресом таблицы дескрипторов прерываний (IDT), а 16 - смещением этого адреса (пределом).

Структурная схема блока выработки управляющих сигналов микропроцессора приведена на рис. 14.

Рис. 14. Блок выработки управляющих сигналов микропроцессора


Основу блока составляют счетчик команд, АЛУ, конвейер команд и группа управляющих, отладочных и тестовых регистров.

Регистр EIP является указателем адреса команды (Instruction Pointer), которая будет выбираться в конвейер команд в качестве очередной команды (в отечественной литературе такое устройство называется счетчик команд).

Конвейер команд МП хранит несколько команд, что позволяет при выполнении линейных программ совместить подготовку очередной команды с выполнением текущей. Команды в конвейер команд поступают с внутренней магистрали микропроцессора и накапливаются в кэше команд. Блок предвыборки и прогнозирования переходов осуществляет трансляцию команд x86 в ИБС-команды, прогнозирует последовательность исполнения команд и направляет полученные последовательности команд в соответствующие ветви конвейера команд. Каждый конвейер команд имеет свой буфер (память магазинного типа FIFO), из которого команды поступают в соответствующий регистр команд для исполнения.

АЛУ команд используется для вычисления физических адресов необходимых для работы микропроцессора команд и данных.

Управляющие регистры CR0, CR1, CR2, CR3 имеют длину по 32 бита. Эти регистры устанавливают режим работы процессора (реальный, защищенный и т.д.), контролируют постраничное распределение памяти и т.д. Они доступны только для привилегированных команд. Младшая часть регистра CR0 используется как слово состояния машины.

Отладочные регистры DR0-DR7 содержат адреса 8 точек прерывания и устанавливают, что должно произойти при достижении программой соответствующей точки прерывания. Эти регистры используются при отладке программы с помощью таких отладочных средств, как debug.exe (для реального режима) или ntsd.exe (для защищенного режима).

Тестовые (контрольные) регистры TRj используются для контроля постраничной системы распределения памяти, реализуемой операционной системой.

2.3.3.

<< | >>
Источник: А.П. Пятибратов, Л.П. Гудыно, А.А. Кириченко. Вычислительные машины, сети и телекоммуникационные системы. 2009 {original}

Еще по теме Центральный процессор ЭВМ:

  1. Свободное воспроизведение программ для ЭВМ и баз данных. Декомпилирование программ для ЭВМ
  2. СИСТЕМА НЕРВНАЯ ЦЕНТРАЛЬНАЯ
  3. Н.В.СТРУМПЭ, В.Д.СИДОРОВ. АППАРАТНОЕ ОБЕСПЕЧЕНИЕ ЭВМ, 2014
  4. Центральный военный совет КНР
  5. § 2. Центральные органы публичной администрации
  6. Балансировка энергии и исцеление Центральной Души
  7. § 2 Высшие и центральные органы публичной администрации
  8. В.Д.СИДОРОВ, Н.В.СТРУМП. АППАРАТНОЕ ОБЕСПЕЧЕНИЕ ЭВМ, 2014
  9. 3. Использование программ для ЭВМ, баз данных и топологий ИМС третьими лицами
  10. 14.2. Реализация моделей клеточных автоматов на ЭВМ