<<
>>

Многопроцессорные структуры ВС

ОКМД - структуры. Для реализации программного параллелизма, включающего циклы и итерации, используются матричные или векторные структуры. В них эффективно решаются задачи матричного исчисления, задачи решения систем алгебраических и дифференциальных уравнений, задачи теории поля, геодезические задачи, задачи аэродинамики.
Теоретические проработки подобных структур относятся к концу 50-60-м гг. Данные структуры очень хорошо зарекомендовали себя при решении перечисленных задач, но они получились очень дорогими по стоимости и эксплуатации. Кроме того, в тех случаях когда структура параллелизма отличалась от матричной, возникает необходимость передачи данных между процессорами через коммутаторы. При этом эффективность вычислений резко снижается. Подобные структуры могут использоваться как сопроцессоры в системах будущих поколений.

МКОД-структуры большой практической реализации не получили. Задачи, в которых несколько процессоров могли эффективно обрабатывать один поток данных, в науке и технике неизвестны.

С некоторой натяжкой к этому классу можно отнести фрагменты многофункциональной обработки, например, обработку на разных процессорах команд с фиксированной и плавающей точкой.

Как фрагмент такой структуры, можно рассматривать локальную сеть персональных компьютеров, работающих с единой базой данных, но, скорее всего, это частный случай использования МКМД-структуры.

МКМД-структуры являются наиболее интересным классом структур вычислительных систем. После разочарований в структурах суперЭВМ, основанных на различном сочетании векторной и конвейерной обработки, усилия теоретиков и практиков сосредоточены на этом направлении.

Уже из названия МКМД-структур видно, что в данных системах можно найти все перечисленные виды параллелизма. Этот класс дает большое разнообразие структур, сильно отличающихся друг от друга своими характеристиками (рис.

9).

Важную роль здесь играют способы взаимодействия компьютеров или процессоров в системе. В сильно связанных системах достигается высокая оперативность взаимодействия процессоров посредством общей оперативной памяти. При этом пользователь имеет дело с многопроцессорной организацией. Наиболее простыми по строению и организации функционирования являются однородные, симметричные структуры. Они обеспечивают простоту подключения процессоров и не требуют очень сложных централизованных операционных систем, размещаемых на одном из процессоров.

Рис. 9. Типовые структуры ВС в МКМД-классе

Однако при построении таких систем возникает много проблем с использованием общей оперативной памяти. Число объединяемых процессоров не может быть велико, оно не превышает 16. Для уменьшения числа обращений к памяти и конфликтных ситуаций может использоваться многоблочное построение ОП, функциональное закрепление отдельных блоков за процессорами, снабжение комплексируемых процессоров собственной памятью типа кэш. Но все эти методы не решают проблемы повышения производительности ВС в целом. Аппаратурные затраты при этом существенно возрастают, а производительность систем увеличивается незначительно.

Появление мощных микропроцессоров типа Pentium привело к экспериментам по созданию многопроцессорных систем на их основе. Так, для включения мощных серверов в локальные сети персональных компьютеров была предложена несколько измененная структура использования ООП - SMP (Shared Memory multiprocessing - мультипроцессирование с разделением памяти). На общей шине оперативной памяти можно объединить несколько микропроцессоров.

Слабосвязанные МКМД-системы могут строиться как многомашинные комплексы или использовать в качестве средств передачи информации общее поле внешней памяти на дисковых накопителях большой емкости.

Невысокая оперативность взаимодействия заранее предопределяет ситуации, в которых число межпроцессорных конфликтов при обращении к общим данным и друг к другу было бы минимальным. Для этого необходимо, чтобы компьютеры комплекса обменивались друг с другом с небольшой частотой, обеспечивая автономность процессов (программы и данные к ним) и параллелизм их выполнения. Только в этом случае обеспечивается надлежащий эффект. Эти проблемы решаются в компьютерных сетях.

Успехи микроинтегральной технологии и появление БИС и СБИС позволяют расширить границы и этого направления. Можно построить системы с десятками, сотнями и даже тысячами процессорных элементов, размещая их в непосредственной близости. Если каждый процессор системы имеет собственную память, то он также будет сохранять известную автономию в вычислениях. Считается, что именно такие системы займут доминирующее положение в мире компьютеров ближайшие 10-15 лет. Подобные ВС получили название систем с массовым параллелизмом (Mass-Parallel Processing, MPP)

Все процессорные элементы в таких системах должны быть связаны единой коммутационной средой. Нетрудно видеть, что здесь возникают проблемы, аналогичные ОКМД системам, но на новой технологической основе.

Передача данных в МРР - системах предполагает обмен не отдельными данными под централизованным управлением, а подготовленными процессами (программами вместе с данными). Этот принцип построения вычислений уже не соответствует принципам программного управления классической ЭВМ. Передача данных процесса по его готовности больше соответствует принципам построения «потоковых машин» (машин, управляемых потоками данных). Подобный подход позволяет строить системы с громадной производительностью и реализовывать проекты с любыми видами параллелизма, например, перейти к «систолическим вычислениям» с произвольным параллелизмом. Однако, для этого необходимо решить целый ряд проблем, связанных с описанием и программированием коммутаций процессов и управления ими. Математическая база этой науки в настоящее время практически отсутствует.

1.6.4.

<< | >>
Источник: А.П. Пятибратов, Л.П. Гудыно, А.А. Кириченко. Вычислительные машины, сети и телекоммуникационные системы. 2009

Еще по теме Многопроцессорные структуры ВС:

  1. СТРУКТУРА
  2. Структура
  3. § 3. О структуре сознания
  4. § 2. Структура парламентов
  5. Функциональные структуры.
  6. Свободные структуры
  7. Структура преступной группы
  8. § 2. Психологическая структура личности
  9. ИНТЕЛЛЕКТ: СТРУКТУРА
  10. Линейно-функциональные структуры.
  11. Типы социальных структур
  12. Линейные структуры.
  13. IV. 2. 2. Кольцевые структуры.
  14. Структура юридической социологии.