<<
>>

11.2. Синергетика и теория хаоса

В 80-е годы все большее внимание исследователей привлека­ет проблема самоорганизации, перехода от хаоса к порядку. Не­мецкий ученый Г. Хакен назвал теорию самоорганизации синер­гетикой (теория совместного действия). Синергетика изучает такие взаимодействия элементов системы, которые приводят к возникновению пространственных, временных или пространст­венно-временных структур в макроскопических масштабах. Осо­бое внимание уделяется структурам, возникающим в процессе самоорганизации.

Г. Хакен отмечает, что синергетика как междисциплинарная наука связана с различными областями физики, химии, биоло-

гии, кибернетики.

"С более общих позиций можно считать, что и теория динамических систем, и синергетика занимаются изучением временной эволюции систем. В частности, математи­ки, работающие в теории бифуркаций, отмечают, что в центре внимания синергетики (по крайней мере в современном виде) находятся качественные изменения в динамическом (или ста­тическом) поведении системы, в частности при бифуркациях. Наконец, синергетику можно рассматривать как часть общего системного анализа, поскольку и в синергетике, и в системном анализе основной интерес представляют общие принципы, ле­жащие в основе функционирования системы" [22, с. 17].

Таким образом, теория катастроф, системная динамика, тео­рия диссипативных структур "самоорганизовались" в новую меж­дисциплинарную науку — синергетику. Г.Р. Иваницкий считает, что термин "синергетика" мало что поясняет и лучше говорить о "динамических процессах и нелинейных системах, приводящих к хаотизации движения или, наоборот, к его упорядочению и по­явлению пространственно-временных структур" [7, с. 3]

Наряду с теорией относительности, квантовой физикой теория хаоса оказывает все более заметное влияние на парадигмы обще­ствоведения. Высказывается надежда, что теория хаоса послужит углублению взаимопонимания между представителями естествен­ных и гуманитарных наук.

Рассмотрим основные понятия синергетики, используемые для изучения поведения нелинейных систем. Система находится в состоянии хаоса, если:

• при любых начальных условиях траектории движения ста­новятся апериодическими;

• при сколь угодно близких начальных условиях две траекто­рии со временем станут различными.

Столь высокая чувствительность к начальным условиям ве­дет к невозможности прогнозирования поведения системы, что является одной из важнейших характеристик хаоса. Режим на­зывается хаотическим, если расстояние между любыми двумя точками, первоначально сколь угодно малое, экспоненциально возрастает со временем [19].

В древние времена хаосом называли неупорядоченную, бес­форменную массу, из которой возникло все сущее. Какая-либо форма, структура может возникнуть из хаоса благодаря внеш­ним целенаправленным воздействиям или под действием сил самоорганизации. "Самоорганизацией называется возникно­вение упорядоченных структур и форм движения из перво-

начально неупорядоченных, нерегулируемых форм движения без специальных, упорядочивающих внешних воздействий" [16, с. 61].

Множество точек, к которым притягиваются траектории ди­намических систем, называется аттрактором. Математики считают, что при качественном анализе поведения динамических систем внимание следует сосредоточить не на переходных процес­сах, а на установившихся режимах. Математическим образом таких режимов и являются аттракторы.

Для устойчивых равно­весных систем аттракторами чаще всего является либо точка, тогда переменные не меняются во времени, либо цикл, тогда сис­тема испытывает периодические колебания.

Если система находится в неустойчивом состоянии, то ее траектории могут притягиваться к странному аттрактору. Стран­ный аттрактор в некоторых случаях похож на клубок траекто­рий, напоминающих две склеенные друг с другом ленты [2]. Если наблюдать за поведением точки, характеризующей состоя­ние системы, на экране дисплея, то можно увидеть, что точка "бегает" по аттрактору, случайно (хаотично) подается то на ле­вую, то на правую ленту.

Странные аттракторы чувствительны к начальным данным. Если выбрать две близкие точки, лежащие на аттракторе, и про­анализировать, как будет меняться расстояние между ними с течением времени r(t), то оказывается, что возможны следую­щие варианты:

• если аттрактор — особая точка, то г (t) —> О при t—>°° (точки сливаются в одну);

• аттрактор — предельный цикл, г (t) — периодическая функ­ция времени;

• странный аттрактор г (t) ~ ext (Х>0), г (t)—>°° при t~>°° (точ­ки разбегаются с экспоненциальной скоростью) .

Таким образом, у странного аттрактора две близкие траекто­рии со временем перестанут быть близкими. Это означает, что как бы точно ни измерялись начальные данные, ошибка со временем станет большой и, следовательно, поведение системы на больших временных интервалах спрогнозировать нельзя. Это явление бы­ло названо эффектом бабочки. История бабочки, случайно за­давленной во время сафари участником путешествия на машине времени, описана в блестящем рассказе P. Бредбери "И грянул гром". "Она упала на пол — изящное маленькое создание, спо­собное нарушить равновесие, повалить маленькие костяшки до­мино ... большие костяшки ... огромные костяшки, соединен-

Рис. 11.7. Сценарий хаотизации

ные цепью неисчислимых лет, составляющих Время". А в итоге президентские выборы выиграл диктатор ...*.

Странные аттракторы описал метеоролог Лоренц в 1963 г., мо­делируя задачи прогноза погоды. Из наличия эффекта бабочки вы­текает практическая невозможность прогноза погоды: если необ­ходимо предсказать погоду на 1-2 месяца вперед с погрешностью D, то начальные данные должны быть известны с погрешностью DxIO 5.

Переход системы в режим странного аттрактора означает, что в ней наблюдаются сложные непериодические колебания, которые очень чувствительны к незначительным изменениям начальных условий. Такой режим может быть назван хаотическим. Возмож­ный сценарий хаотизации приведен на рис. 11.7 [1].

Исследование экологических моделей привело ученых к экс­периментальному открытию каскадов удвоений периода. Уни­версальность этого явления доказал M. Фейгенбаум (1978). Кас­кад удвоений периода можно описать следующим образом. В определенной области значений параметра система действует в периодическом режиме с периодом T; при переходе через би­фуркационное значение параметра период удваивается и стано­вится равным 2Т; дальнейшее изменение параметра приводит снова к удваиванию периода, он становится равным 4Т и т.д. Последовательные бифуркации удвоения быстро следуют одна за другой — конечный отрезок изменения параметра содержит бесконечное число удвоений (после P бифуркаций число цик­лов равно 2Р). Таким образом, исследуемый эволюционный про-

* Фантастика Рея Бредбери. M., 1964.

цесс становится все более сложным. В пределе появляется сверх­сложная организация — количество циклов 2°°, процесс стано­вится непериодическим, случайным, возникает хаос.

<< | >>
Источник: Ю.М. Плотински. Модели социальных процессо. 2001

Еще по теме 11.2. Синергетика и теория хаоса:

  1. 11.2. Синергетика и теория хаоса
  2. Глава 13. Модели хаоса и катастроф
  3. 13.2. Портреты хаоса
  4. Логика хаоса.
  5. 5.4.4. Гармония из хаоса
  6. 5.6. ВЛАСТЬ ХАОСА
  7. Теория X и теория Y (Д. Макгрегор).
  8. Чтобы продвинуться в своем развитии, мужчине надо получить то, что ему нужно, не создавая при этом хаоса в своей жизни и не причиняя вреда тем, кого он любит.
  9. ТЕОРИЯ ПОРОГОВАЯ
  10. ТЕОРИЯ РАЗВИТИЯ ФУНКЦИОНАЛЬНАЯ
  11. ТЕОРИЯ РАЗВИТИЯ ВЕРОЯТНОСТНАЯ
  12. ТЕОРИЯ ЧЕРТ ЛИЧНОСТНЫХ
  13. ТЕОРИЯ ЛИЧНОСТИ ИМПЛИЦИТНАЯ
  14. Глава 1 ТЕОРИЯ
  15. ТЕОРИЯ ПОИСКА СМЫСЛА ЖИЗНЕННОГО
  16. ТЕОРИЯ РОЛЕЙ
  17. ТЕОРИЯ