Центральный процессор

Центральный процессор тоже может подвергаться энергосберегающим мероприятиям. В ноутбуках центральный процессор может быть погружен в спячку программным способом, что может снизить его энергопотребление почти до нуля.
Все, что он должен сделать в таком состоянии, — проснуться при возникновении прерывания. Поэтому при любом простое — в ожидании завершения операции ввода-вывода или по причине отсутствия задач — центральный процессор впадает в спячку.

На многих компьютерах наблюдается взаимосвязь между напряжением питания центрального процессора, тактовой частотой и потреблением энергии. Напряжение питания центрального процессора во многих случаях может быть снижено программным путем, что приводит к экономии энергии, но также ведет к снижению тактовой частоты (примерно в линейной зависимости). Поскольку потребление электроэнергии пропорционально квадрату напряжения, снижение напряжения вдвое приводит примерно к двойному падению скорости центрального процессора, но вчетверо снижает энергопотребление.

Это свойство можно использовать в программах с четко определенными сроками выполнения задачи, к примеру в программах просмотра мультимедиа, которым нужно распаковать и отобразить кадр каждые 40 мс и которые вынуждены простаивать, если справляются с этим быстрее. Предположим, что на работу центрального процессора в полную силу в течение 40 мс затрачивается х джоулей, а на работу с половинной скоростью — х/4 джоулей. Если программа просмотра мультимедиа способна распаковать и отобразить кадр за 20 мс, процессор может работать в полную силу в течение 20 мс, а затем на 20 мс отключаться операционной системой, при этом общее потребление энергии составит х/2 джоулей. Вместо этого процессор может работать в половину своей мощности и справляться с выдерживанием назначенного срока, но при этом потреблять только х/4 джоулей. Сравнительная картина работы на полной скорости и полной мощности в течение определенного интервала времени и на уменьшенной вдвое скорости и вчетверо более низкой мощности в течение вдвое большего интервала времени показана на рис. 5.33. В обоих случаях делается одна и та же работа, но в ситуации, показанной на рис. 5.33, б, на нее затрачивается в два раза меньше энергии.


Рис. 5.33. Центральный процессор: а — работа с полной тактовой частотой; б — снижение напряжения питания вдвое приводит к двойному снижению тактовой частоты и вчетверо снижает энергопотребление

Следуя той же логике, если пользователь набирает по одному символу в секунду, но работа, необходимая для обработки символа занимает 100 мс, то операционной системе лучше обнаружить продолжительные простои и десятикратно снизить скорость работы процессора. Короче говоря, работа на пониженной скорости по сравнению с работой на полной скорости с точки зрения экономии энергии является более эффективной.

Интересно, что снижение скорости работы ядер центрального процессора не всегда предполагает снижение производительности. В одной из работ (Hruby et al., 2013) показано, что иногда с замедлением работы ядер производительность сетевого стека повышается.

Объясняется это тем, что ядро может быть слишком быстрым для выполняемой задачи. Представим, к примеру, центральный процессор с несколькими быстрыми ядрами, в котором одно ядро отвечает за передачу сетевых пакетов от имени производителя, запущенного на другом ядре. Производитель и сетевой стек связаны напрямую посредством общей памяти, и оба они запущены на выделенных ядрах. Производитель осуществляет большой объем вычислений и не в состоянии поспеть за ядром сетевого стека. При типовом запуске по сети будет передаваться все, что имеется на передачу, и в течение некоторого времени производиться опрос общей памяти для определения того, действительно ли в ней нет больше данных на передачу. В конечном счете ядро сдастся и перейдет в спящий режим, поскольку непрерывный опрос приводит к большому расходу электроэнергии. Вскоре после этого производитель выдаст новые данные, но теперь сетевой стек находится в беспробудном сне. Пробуждение стека занимает некоторое время и снижает пропускную способность. Одним из возможных решений будет отказ от перехода в спящее состояние, но вряд ли это станет привлекательным вариантом, поскольку при этом возрастет электропотребление, то есть произойдет прямо противоположное тому, к чему мы стремились. Намного более привлекательным будет решение о запуске сетевого стека на более медленном ядре, чтобы оно постоянно было занято работой (и никогда не переходило в спящий режим), но при этом по-прежнему сохранялся бы режим снижения энергопотребления. Если замедлить работу сетевого ядра достаточно целесообразным образом, его производительность будет выше, чем в той конфигурации, где все ядра работают на полной скорости.

Память

Для экономии энергии при работе с памятью можно воспользоваться двумя способами. Во-первых, можно очистить, а затем обесточить кэш-память. Она всегда может быть перезагружена из оперативной памяти без потери информации. Перезагрузка может быть проведена довольно быстро в динамическом режиме, поэтому выключение кэшпамяти относится к входу в спящий режим.

Более радикальный способ заключается в записи содержимого оперативной памяти на диск с последующим отключением самой оперативной памяти. Этот подход относится к ждущему режиму, поскольку требует больших затрат времени на перезагрузку, особенно если диск тоже был отключен. Фактически можно полностью отключить память от источника питания. Когда память отключена, центральный процессор должен либо быть остановлен, либо выполнять программу с постоянного запоминающего устройства. Если центральный процессор отключен, то прерывание, вызывающее его пробуждение, должно заставить его перейти к выполнению кода в постоянном запоминающем устройстве, чтобы память перед использованием была перезагружена. Несмотря на все издержки, выключение памяти на длительные периоды времени (например, на несколько часов) может быть оправданно, если хочется перезапуститься за несколько секунд, а не перезапускать операционную систему с диска, затрачивая на это минуту и более.

<< | >>
Источник: Э. ТАНЕНБАУМ Х. БОС. СОВРЕМЕННЫЕ ОПЕРАЦИОННЫЕ СИСТЕМ Ы 4-е ИЗДАНИЕ. 2015

Еще по теме Центральный процессор:

  1. СИСТЕМА НЕРВНАЯ ЦЕНТРАЛЬНАЯ
  2. Центральный военный совет КНР
  3. § 2. Центральные органы публичной администрации
  4. Балансировка энергии и исцеление Центральной Души
  5. § 2 Высшие и центральные органы публичной администрации
  6. § 81 Основания вотчинного права в России. – Историческое происхождение вотчинных прав в центральной России из местного владения. – Владение землями и основания прав в северных областях, в Малороссии, в бывших землях литовских, в новороссийском крае, в Крыму
  7. Кудинов Ю. И., Пащенко Ф. Ф., Келина А. Ю.. Практикум по основам современной информатики: Учебное пособие., 2011
  8. Ю. И. КУДИНОВ, Ф.Ф. ПАЩЕНКО, А. Ю. КЕЛИНА. ПРАКТИКУМ ПО ОСНОВАМ СОВРЕМЕННОЙ ИНФОРМАТИКИ, 2011
  9. Рекомендации Анти-шизоиду:
  10. Степанов А. Н.. Архитектура вычислительных систем и компьютерных сетей, 2007
  11. В. И. Юров. Assembler. Учебник для вузов. 2-е изд, 2003
  12. СИСТЕМА НЕРВНАЯ ПЕРИФЕРИЧЕСКАЯ
  13. 14.6. Организация взаимодействия библиотек
  14. Лариса Александровна Малинина Вадим Васильевич Лысенко Максим Анатольевич Беляев. Основы информатики: Учебник для вузов, 2006
  15. АМФЕТАМИН
  16. Вопросы для самоконтроля
  17. Основные этапы управления.