Технология соединений

У каждого узла имеется карта сетевого интерфейса, от которой отходит один или два электрических (или оптоволоконных) кабеля. Эти кабели подключены либо к другим узлам, либо к коммутаторам. В небольших системах может быть один коммутатор, к которому по топологии «звезда» (рис.
8.16, а) подключены все узлы. Эта топология используется в современных коммутируемых сетях Ethernet.

В качестве альтернативы схеме с одним коммутатором узлы могут выстраиваться в кольцо, при этом из сетевой интерфейсной карты будут выходить два кабеля, один — к левому, а другой — к правому узлу (рис. 8.16, б). Как видно из рисунка, при такой топологии коммутаторы не нужны.

Многие коммерческие системы используют двумерную схему решетки (grid) или ячеистой сети (mesh (рис. 8.16, в). Она обладает высокой степенью упорядоченности и легко наращивается до больших размеров. Одной из ее характеристик является диаметр — самый длинный путь между любыми двумя узлами, который растет пропорционально значению квадратного корня от количества узлов. Вариантом решетки является двойной тор (рис. 8.16, г), где решетка имеет соединенные грани. Эта топология не только более отказоустойчива, но и имеет меньший диаметр, потому что противоположные узлы теперь всего в двух шагах друг от друга.

Топология куб (рис. 8.16, д) имеет правильную трехмерную структуру. На рисунке показан куб 2 х 2 х 2, но в более общем виде он может быть представлен как куб k х k х k. На рис. 8.16, е показан четырехмерный куб, построенный из двух трехмерных кубов с соединенными соответствующими узлами.

За счет дублирования структуры (рис. 8.16, е) и соединения соответствующих узлов, чтобы получить форму блока из четырех кубов, можно создать пятимерный куб. Для перехода в шестимерную форму можно повторить блок из четырех кубов и соединить друг с другом соответствующие узлы и т. д. Сформированный таким образом га-мерный куб называется гиперкубом. Эта топология используется на многих параллельных компьютерах, поскольку рост диаметра имеет линейную зависимость от роста размерности. Иными словами, диаметр вычисляется как логарифм по основанию 2 от числа узлов.

Рис. 8.16. Различные топологии связи: а — с одним коммутатором; б — кольцо; в — решетка; г — двойной тор; д — куб; е — четырехмерный куб


К примеру, 10-мерный гиперкуб имеет 1024 узла, однако диаметр у него равен лишь 10, что придает ему великолепные характеристики с низкими задержками. Обратите внимание на то, что в отличие от него 1024 узла, выстроенные в решетку 32 х 32, имеют диаметр, равный 62, что более чем в шесть раз хуже аналогичного показателя гиперкуба. Цена, которую приходится платить за небольшой диаметр, выражается в большом числе ответвлений и, следовательно, большом количестве связей (и их стоимости), которых у гиперкуба значительно больше.

В мультикомпьютерах используются две разновидности схем коммутации. В первой из них каждое сообщение разбивается (средствами пользовательской программы или сетевого интерфейса) на части некой максимальной длины, которые называются пакетами. Коммутационная схема, называемая коммутацией пакетов с промежуточным хранением (store-and-forward packet switching), состоит из пакета, доставляемого на первый коммутатор интерфейсной сетевой платой узла-источника (рис. 8.17, а). Данные поступают побитно, и когда во входной буфер прибудет весь пакет, он копируется на линию, ведущую к следующему коммутатору на маршруте доставки (рис. 8.17, б). Когда пакет (рис. 8.17, в) прибывает на коммутатор, подключенный к узлу-получателю, он копируется на карту сетевого интерфейса этого узла и в конечном счете попадает в его оперативную память.

При всей гибкости и эффективности схемы коммутации пакетов с промежуточным хранением у нее есть проблема нарастающего времени ожидания (задержки) при передаче пакетов по схеме соединений. Предположим, что время перемещения пакета по одному транзитному участку, показанному на рис. 8.17, составляет T наносекунд. Поскольку на пути от центрального процессора 1 до центрального процессора 2 пакет

Рис. 8.17. Коммутация пакетов с промежуточным хранением


должен быть скопирован четыре раза (на коммутаторы A, C, D и, наконец, на получающий его центральный процессор), и копирование не может осуществляться, пока не будет завершено предыдущее копирование, задержка схемы соединений составит 4Г. Один из выходов из такого положения состоит в создании сети, в которой пакет может быть логически разделен на небольшие части. Как только первая часть поступит на коммутатор, она может быть послана дальше еще до того, как на этот коммутатор прибудет окончание пакета. По-видимому, такую часть можно уменьшить до одного бита.

Другой режим коммутации называется коммутацией каналов (circuit switching) и заключается в предварительной установке маршрута через все коммутаторы к коммутатору назначения. Как только маршрут будет установлен, биты без задержки с максимально возможной скоростью проследуют по всему маршруту от источника к получателю. Никакой буферизации на промежуточных коммутаторах не осуществляется. Для коммутации каналов требуется установочный этап, на который уходит определенное время, но когда этот этап завершится, передача данных ведется быстрее. После того как пакет будет отправлен, маршрут может быть снова закрыт. При использовании разновидности коммутации каналов, называемой маршрутизацией способом коммутации каналов (wormhole routing), каждый пакет разбивается на подпакеты, что позволяет первому подпакету приступить к перемещению даже до того, как будет выстроен весь маршрут.

<< | >>
Источник: Э. ТАНЕНБАУМ Х. БОС. СОВРЕМЕННЫЕ ОПЕРАЦИОННЫЕ СИСТЕМ Ы 4-е ИЗДАНИЕ. 2015

Еще по теме Технология соединений:

  1. 3. У любого дела есть своя технология. Педагогическая технология всегда духовна и не лжива
  2. Соединение с жизнью
  3. § 3.6. Организационные технологии
  4. Технология социальной работы
  5. Понятие и основания классификации организационных технологий.
  6. Соединение
  7. СОЕДИНЕНИЕ НА ЧЕТВЕРТОЙ СТАДИИ
  8. Соединение с телом
  9. Базовые принципы соединения ума и тела
  10. СОЕДИНЕНИЕ НА ПЯТОЙ СТАДИИ
  11. Соединение
  12. Соединение
  13. Соединение
  14. Соединение со смертью
  15. СОЕДИНЕНИЕ НА ШЕСТОЙ СТАДИИ
  16. Соединение противоположностей
  17. Вы и ваши нервные соединения
  18. Вы и ваши нервные соединения