Процессы

Ключевым понятием во всех операционных системах является процесс. Процессом, по существу, является программа во время ее выполнения. С каждым процессом связано его адресное пространство — список адресов ячеек памяти от нуля до некоторого максимума, откуда процесс может считывать данные и куда может записывать их.
Адресное пространство содержит выполняемую программу, данные этой программы и ее стек. Кроме этого, с каждым процессом связан набор ресурсов, который обычно включает регистры (в том числе счетчик команд и указатель стека), список открытых файлов, необработанные предупреждения, список связанных процессов и всю остальную информацию, необходимую в процессе работы программы. Таким образом, процесс — это контейнер, в котором содержится вся информация, необходимая для работы программы.

Более подробно понятие процесса будет рассмотрено в главе 2, а сейчас, для того чтобы выработать интуитивное представление о процессе, рассмотрим систему, работающую в мультипрограммном режиме. Пользователь может запустить программу редактирования видео и указать конвертирование одночасового видеофайла в какой-нибудь определенный формат (процесс займет несколько часов), а затем переключиться на блуждания по Интернету. При этом может заработать фоновый процесс, который периодически «просыпается» для проверки входящей электронной почты. И у нас уже будет (как минимум) три активных процесса: видеоредактор, веб-браузер и программа получения (клиент) электронной почты. Периодически операционная система будет принимать решения остановить работу одного процесса и запустить выполнение другого, возможно, из-за того, что первый исчерпал свою долю процессорного времени в предыдущую секунду или две.

Если процесс приостанавливается таким образом, позже он должен возобновиться именно с того состояния, в котором был остановлен. Это означает, что на период приостановки вся информация о процессе должна быть явным образом где-то сохранена. Например, у процесса могут быть одновременно открыты для чтения несколько файлов. С каждым из этих файлов связан указатель текущей позиции (то есть номер байта или записи, которая должна быть считана следующей). Когда процесс приостанавливается, все эти указатели должны быть сохранены, чтобы вызов read, выполняемый после возобновления процесса, приводил к чтению нужных данных. Во многих операционных системах вся информация о каждом процессе, за исключением содержимого его собственного адресного пространства, хранится в таблице операционной системы, которая называется таблицей процессов и представляет собой массив (или связанный список) структур, по одной на каждый из существующих на данный момент процессов.

Таким образом, процесс (в том числе приостановленный) состоит из собственного адресного пространства, которое обычно называют образом памяти, и записи в таблице процессов с содержимым его регистров, а также другой информацией, необходимой для последующего возобновления процесса.

Главными системными вызовами, используемыми при управлении процессами, являются вызовы, связанные с созданием и завершением процессов. Рассмотрим простой пример. Процесс, называемый интерпретатором команд, или оболочкой, считывает команды с терминала. Пользователь только что набрал команду, требующую компиляции программы. Теперь оболочка должна создать новый процесс, запускающий компилятор. Когда этот процесс завершит компиляцию, он произведет системный вызов для завершения собственного существования.

Если процесс способен создавать несколько других процессов (называющихся дочерними процессами), а эти процессы в свою очередь могут создавать собственные дочерние процессы, то перед нами предстает дерево процессов, подобное изображенному на рис.

1.13. Связанные процессы, совместно работающие над выполнением какой-нибудь задачи, зачастую нуждаются в обмене данными друг с другом и синхронизации своих действий. Такая связь называется межпроцессным взаимодействием и будет подробно рассмотрена в главе 2.

Другие системные вызовы, предназначенные для управления процессом, позволяют запросить выделение дополнительной памяти (или освобождение незадействованной), организовать ожидание завершения дочернего процесса или загрузку какой-нибудь другой программы поверх своей.

Рис. 1.13. Дерево процессов. Процесс A создал два дочерних процесса, B и C.

Процесс B создал три дочерних процесса, D, Eи F


Временами возникает потребность в передаче информации запущенному процессу, который не находится в состоянии ожидания этой информации. Можно привести в пример процесс, который обменивается информацией с другим процессом, запущенным на другом компьютере, и посылает удаленному процессу сообщение по сети. Чтобы застраховаться от возможной утраты сообщения или ответа на него, отправитель может запросить собственную операционную систему уведомить его по истечении определенного интервала времени, чтобы он мог повторно отправить сообщение, если не получит подтверждения его получения раньше. После установки такого таймера программа может продолжить выполнение другой работы.

Когда истечет заданный интервал времени, операционная система посылает процессу сигнал тревоги. Этот сигнал заставляет процесс приостановить выполняемую работу, сохранить в стеке состояние своих регистров и запустить специальную процедуру обработки сигнала тревоги, для того чтобы, к примеру, заново передать предположительно утраченное сообщение. Когда обработчик сигнала завершит свою работу, запущенный процесс возобновится в том самом состоянии, которое было до поступления сигнала. Сигналы являются программными аналогами аппаратных прерываний. Они могут генерироваться в различных ситуациях, а не только по истечении времени, установленного в таймере. Многие аппаратные прерывания (например, выполнение недопустимой команды или обращение по неверному адресу) также транслируются процессу, при выполнении которого произошла ошибка.

Каждому пользователю, которому разрешено работать с системой, системным администратором присваивается идентификатор пользователя (User IDentification (UID)). Каждый запущенный процесс имеет UID того пользователя, который его запустил. Дочерние процессы имеют такой же UID, как и у родительского процесса. Пользователи могут входить в какую-нибудь группу, каждая из которых имеет собственный идентификатор группы (Group IDentification (GID)).

Пользователь с особым значением UID, называемый в UNIX суперпользователем (superuser), а в Windows администратором (administrator), имеет особые полномочия, позволяющие пренебрегать многими правилами защиты. В крупных компьютерных системах только системный администратор знает пароль, необходимый для получения прав суперпользователя, но многие обычные пользователи (особенно студенты) прикладывают немалые усилия, пытаясь отыскать бреши в системе, которые позволили бы им стать суперпользователем без пароля[5].

Мы будем подробно рассматривать процессы, связи между ними и сопутствующие вопросы в главе 2.

1.5.2.

<< | >>
Источник: Э. ТАНЕНБАУМ Х. БОС. СОВРЕМЕННЫЕ ОПЕРАЦИОННЫЕ СИСТЕМ Ы 4-е ИЗДАНИЕ. 2015

Еще по теме Процессы:

  1. Очерк 2: Берт «Процесс — вот мое достояние. Именно процесс создает успех»
  2. Задания, мешающие когнитивному процессу (ЗМКП), и задания, помогающие когнитивному процессу (ЗПКП)
  3. ПРОЦЕСС НЕРВНЫЙ
  4. ПРОЦЕСС НАДСОЗНАТЕЛЬНЫЙ
  5. Психические процессы
  6. ПРОЦЕСС НЕРВНЫЙ: ИНДУКЦИЯ
  7. ПРОЦЕСС ПСИХИЧЕСКИЙ
  8. ПРОЦЕСС КУЛЬТУРНЫЙ
  9. Обратный процесс
  10. Ю.М. Плотински. Модели социальных процессо, 2001
  11. ПРОЦЕСС ТЕЛЕПАТИЧЕСКИЙ
  12. ПРОЦЕСС ДУШЕВНЫЙ БЕССОЗНАТЕЛЬНЫЙ
  13. Процесс
  14. Творческий процесс на телевидении