<<
>>

Накопитель на жестком магнитном диске

Накопитель на жестком магнитном диске (НМД) имеет тот же принцип действия, что и НГМД, но магнитный носитель информации в нем является несъемным и может состоять более, чем из одной пластины.
При наличии нескольких закрепленных на общей оси пластин, образуется пакет магнитных носителей.

Каждую рабочую поверхность такой конструкции обслуживает своя головка. Если в НГМД головка во время работы соприкасается с поверхностью дискеты, то в НМД головки во время работы находятся на небольшом расстоянии от поверхности (десятые доли микрона). При устранении контакта головки с поверхностью диска появилась возможность увеличить скорость вращения дисков, а следовательно, повысить быстродействие внешнего ЗУ.

Запись и чтение информации на жестком магнитном диске производится с помощью магнитных головок, которые во время чтения-записи неподвижны. Магнитное покрытие каждой поверхности диска во время чтения-записи перемещается относительно головки. Магнитный «след» на поверхности диска, образовавшийся при работе головки на запись, образует кольцевую траекторию - дорожку.

Дорожки, расположенные друг под другом на всех рабочих поверхностях магнитного носителя, называются цилиндром.

В жестких МД различных фирм используются разные материалы для магнитного покрытия: диски ранних конструкций имели оксидное покрытие (окись железа), более

поздние диски - кобальтовое покрытие. Оксидное покрытие наносилось на поверхность диска в виде магнитного лака, который после высыхания образовывал довольно толстый магнитный слой. Обеспечить устойчивую запись в таком слое можно было за счет длительного воздействия электромагнитным полем. Поэтому магнитные «следы» на поверхности диска получались большого размера, что приводило к невысокой плотности записи и низкому быстродействию. Для увеличения емкости магнитного диска приходилось увеличивать его размеры.

Кобальтовое покрытие наносится на поверхность диска методом напыления. При этом образуется тонкая магнитная пленка, на которую легче воздействовать для образования магнитных следов. Размеры магнитных следов уменьшились, что позволило увеличить продольную и поперечную плотности записи. Увеличение продольной плотности записи позволило увеличить емкость дорожки, а увеличение поперечной плотности записи - количество дорожек на поверхности диска. Диски той же емкости уменьшились в размерах.

Стандарт на физическое размещение информации на жестком магнитном диске мягче, чем для НГМД, так как гибкие диски должны читаться одинаково на дисководах разных фирм, в то время как жесткий магнитный диск имеет встроенную в него систему управления. При работе с жестким магнитным диском встроенная система управления решает вопросы физического размещения информации и зачастую недоступна для внешнего вмешательства. Например, наружные и внутренние дорожки магнитного диска имеют разную длину. Если их сделать одинаковой емкости и писать информацию с одинаковой плотностью записи, то на наружных дорожках останется много свободного места. Некоторые фирмы при изготовлении жестких дисков делают дорожки различной емкости. Но для того чтобы стандартные операционные системы могли работать с такими дисками, встроенный в них контроллер осуществляет пересчет адресов; при этом физически на диске имеется меньшее количество дорожек, чем кажется операционной системе (так как операционная система настроена на работу с дорожками одинаковой емкости).

Количество дисков, каждый из которых имеет по две рабочих поверхности, в накопителе может быть от 1 до 10 и более. В некоторых накопителях две крайние поверхности пакета (верхняя и нижняя) не являются рабочими - при этом сокращается размер дисковода (и емкость тоже). Иногда эти поверхности используются для размещения служебной информации.

Жесткие диски делают герметичными - малое расстояние (зазор) между рабочей поверхностью и магнитной головкой должно быть защищено от пылинок, чтобы уберечь тонкий напыленный слой кобальта от стирания.

Магнитная головка во время работы не должна касаться поверхности диска и в то же время находиться от нее на расстоянии в доли микрона. Наиболее распространенный способ удовлетворения обоих условий - применение «воздушной подушки»: в магнитной головке делаются отверстия, через которые в рабочий зазор в направлении магнитного диска нагнетается сжатый воздух - он и является демпфером (воздушной подушкой), не позволяющим магнитной головке «прижаться» к поверхности диска. Воздух перед нагнетанием в зазоры проходит тщательную очистку от пыли с помощью специальных фильтров.

Магнитные головки при работе НМД могут перемещаться, настраиваясь на требуемую дорожку.

Перед началом эксплуатации пакет магнитных дисков форматируется: на нем размечаются дорожки (ставится маркер начала дорожки и записывается ее номер), наносятся служебные зоны секторов на дорожках. Для записи-чтения информации контроллеру НМД передается адрес: номер цилиндра, номер рабочей поверхности цилиндра, номер сектора на выбранной дорожке. На основании этого магнитные головки перемещаются к нужному цилиндру, ожидают появления маркера начала дорожки, ожидают появления требуемого сектора, после чего записывают или читают информацию из него. Несмотря на то, что все магнитные головки установлены на требуемый цилиндр, работает в каждый данный момент только одна головка.

Из-за малого расстояния между секторами и высокой скорости вращения пакета дисков схемы управления не всегда успевают переключиться на чтение-запись следующего сектора (если считываемые/записываемые сектора следуют один за одним). В этом случае после обработки одного сектора приходится ожидать, пока диск сделает целый оборот и к головкам подойдет требуемый сектор. Чтобы избежать этого, при форматировании используется чередование (interleaving) секторов: последовательность нумерации секторов на дорожке задается таким образом, что следующий по порядку номер сектора принадлежит не следующему по физическому размещению сектору, а через «к» секторов (где к - фактор чередования).

Фактор чередования при форматировании задается таким образом, чтобы система управления НМД обеспечила обработку с последовательными номерами без длительного ожидания (слишком маленький к приводит к «проскакива- нию» требуемого сектора и ожиданию нового витка, слишком большое значение к так же приводит к ожиданию, так как схема управления уже отработала, а требуемый сектор все еще не подошел к головке).

Поскольку физически НМД различных фирм могут быть устроены по-разному, возникает проблема совместимости НМД с микропроцессорным комплектом ЭВМ. Проблема эта решается с помощью стандартизации интерфейсов для накопителей на жестких магнитных дисках.

Основной характеристикой НМД является их емкость, которая главным образом зависит от плотности записи, в свою очередь в значительной степени зависящей от уровня технологии. Наиболее результативным для повышения плотности записи явилось применение магниторезистивных головок, которые известны и применяются уже давно, но по-настоящему массовой продукцией долгое время не были из-за большой капиталоемкости их производства. Кроме увеличения емкости диска повышение плотности записи приводит и к увеличению скорости считывания-записи данных при неизменных диаметре и скорости вращения носителя.

Для офисных и домашних компьютеров начального и среднего уровня фирма Samsung, например, разработала новые серии накопителей SpinPoint VL40 и SpinPoint PL40 со скоростью вращения шпинделя 5400 и 7200 об/мин, соответственно. Емкость пластины этих HDD составляла 40 Гб, они имеют 2-хгигабайтный буфер. Среднее время поиска составляет 8,9 мс. Устройства SpinPoint VL40 выпускаются в модификациях 20, 30 и 40 ГБ, а SpinPoint PL40 - 20 и 40 Гб.

Современные модельные ряды SpinPoint V80 и SpinPoint P80 имеют такие же скорости вращения шпинделя, однако плотность записи на одну пластину у них в два раза выше, а именно 80 Гб. Это позволяет создавать конечные продукты емкостью 20, 40, 60, 80, 120 и 160 Гб. Емкость буферной кэш-памяти у устройств серии V80 составляет 2 ГБ, а у P80 - 8 Мб. Среднее время поиска равно 8,9 мс.

2.5.2.

<< | >>
Источник: А.П. Пятибратов, Л.П. Гудыно, А.А. Кириченко. Вычислительные машины, сети и телекоммуникационные системы. 2009

Еще по теме Накопитель на жестком магнитном диске:

  1. Магнитная подстройка 2012
  2. Жесткий характер
  3. Магнитный Мастер Крайон, Царь Мельхиседек, Владыка Эль Мория
  4. Жесткая структура
  5. Энергетическое поле жесткой структуры
  6. Жизненная задача и высшее «Я» для жесткого характера
  7. Рекомендации Крайона Магнитному Каналу и всем каналам Духа
  8. ПОТЕНЦИАЛ
  9. Вопросы Сеферы
  10. Осмотр средств вычислительной техники
  11. Балерины (см. Танцоры) Бизнесмены
  12. Э. ТАНЕНБАУМ, А. ВУДХАЛЛ. ОПЕРАЦИОННЫЕ СИСТЕМЫ Разработка и реализация 3-е издание, 2007
  13. БЕССОЗНАТЕЛЬНОЕ КОЛЛЕКТИВНОЕ
  14. Взаимопревращаемость психологического и парапсихологического
  15. ОРГАНИЗМ: ОРИЕНТАЦИЯ
  16. Человечество! Я приветствую тебя! Мельхиседек. Аминь.
  17. Освещение на телесъемках
  18. Видеозапись
  19. Как воплотить это в жизнь
  20. Жёсткость